Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.767
Filter
1.
Clin Proteomics ; 21(1): 36, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764026

ABSTRACT

BACKGROUND: To comprehend the complexities of pathophysiological mechanisms and molecular events that contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in monitoring the onset of PDR. METHODS: A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to explore the functional relevance, hub proteins, and biomarkers. RESULTS: Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the duration of diabetes. Third, "Complement and coagulation cascades" was an important pathway for PDR development. CONCLUSIONS: AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR management.

2.
Mol Med ; 30(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720283

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Subject(s)
AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
3.
Ann Med ; 56(1): 2332956, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38738384

ABSTRACT

PURPOSE: It is unknown whether febuxostat can delay the progression of kidney dysfunction and reduce kidney endpoint events. The aim was to evaluate the renoprotective effect of febuxostat in patients with hyperuricemia or gout by performing a meta-analysis of randomized controlled trials (RCTs). METHODS: MEDLINE, Web of science, EMBASE, ClinicalTrials.gov, and the Cochrane Central Register for Randomized Controlled Trials were searched. The main outcomes included kidney events (serum creatinine doubling or progression to end-stage kidney disease or dialysis). The secondary outcomes were the rate of change in the estimated glomerular filtration rate (eGFR) and changes in the urine protein or urine albumin to creatinine ratio from baseline to the end of follow-up. We used random-effects models to calculate the pooled risk estimates and 95% CIs. RESULTS: A total of 16 RCTs were included in the meta-analysis. In comparison with the control group, the patients who received febuxostat showed a reduced risk of kidney events (RR = 0.56, 95% CI 0.37-0.84, p = 0.006) and a slower decline in eGFR (WMD = 0.90 mL/min/1.73 m2, 95% CI 0.31-1.48, p = 0.003). The pooled results also revealed that febuxostat use reduced the urine albumin to creatinine ratio (SMD = -0.21, 95% CI -0.41 to -0.01, p = 0.042). CONCLUSION: Febuxostat use is associated with a reduced risk of kidney events and a slow decline in eGFR. In addition, the urine albumin to creatinine ratio decreased in febuxostat users. Accordingly, it is an effective drug for delaying the progression of kidney function deterioration in patients with gout.Systematic review registration: PROSPERO CRD42021272591.


Subject(s)
Febuxostat , Glomerular Filtration Rate , Gout Suppressants , Gout , Hyperuricemia , Randomized Controlled Trials as Topic , Humans , Creatinine/urine , Creatinine/blood , Disease Progression , Febuxostat/therapeutic use , Febuxostat/pharmacology , Glomerular Filtration Rate/drug effects , Gout/drug therapy , Gout/complications , Gout Suppressants/therapeutic use , Hyperuricemia/drug therapy , Hyperuricemia/complications , Kidney/physiopathology , Kidney/drug effects , Kidney Failure, Chronic/prevention & control , Kidney Failure, Chronic/complications
4.
Hypertens Res ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750218

ABSTRACT

Phenotypic shift of vascular smooth muscle cells (VSMCs) plays a key role in intimal hyperplasia, especially in patients with diabetes mellitus (DM). This study aimed to investigate the role of dynamin-related protein 1 (DRP1) in mitochondrial fission-mediated VSMC phenotypic shift and to clarify whether DRP1 is the therapeutic target of isoliquiritigenin (ISL). Wire injury of carotid artery or platelet-derived growth factor treatment was performed in DM mice or high-glucose cultured human aortic smooth muscle cells (HASMCs), respectively. The effects of DRP1 silencing on DM-induced intimal hyperplasia were investigated both in vivo and in vitro. Phenotypic shift of HASMCs was evaluated by detection of reactive oxygen species (ROS) generation, cell viability, and related protein expressions. The effects of ISL on DM-induced intimal hyperplasia were evaluated both in vivo and in vitro. DRP1 silencing and ISL treatment attenuated DM-induced intimal hyperplasia with reduced ROS generation, cell viability, and VSMC dedifferentiation. The GTPase domain of DRP1 protein played a critical role in mitochondrial fission in DM-induced VSMC phenotypic shift. Cellular experiments showed that ISL inhibited mitochondrial fission and reduced the GTPase activity of DRP1, which was achieved by the directly binding to K216 of the DRP1 GTPase domain. ISL attenuated mouse intimal hyperplasia by reducing GTPase activity of DRP1 and inhibiting mitochondrial fission in vivo. In conclusion, increased GTPase activity of DRP1 aggregated DM-induced intimal hyperplasia by increasing mitochondrial fission-mediated VSMC phenotypic shift. ISL attenuated mouse intimal hyperplasia by reducing DRP1 GTPase activity and inhibiting mitochondrial fission of VSMCs.

5.
Front Oncol ; 14: 1372625, 2024.
Article in English | MEDLINE | ID: mdl-38562176

ABSTRACT

Anesthetic management of patients with renal cell carcinoma with tumor thrombus in the inferior vena cava (IVC) is challenging. This paper reports the experience of anesthesia management in a patient with advanced renal cell carcinoma with thrombus accumulation in the IVC, right atrium, and pulmonary artery who underwent radical nephrectomy and tumor thrombus removal assisted by cardiopulmonary bypass. The emboli, measuring approximately 3 × 6 cm in the left inferior pulmonary artery and 4 × 13 cm in the right main pulmonary artery, were removed completely. During incision of the IVC under systemic heparinization, significant blood loss occurred in the surgical field. The surgery took 724 min, and cardiopulmonary bypass took 396 min. Intraoperative blood loss was 22,000 ml. The patient was extubated 39 hours after surgery and stayed in intensive care unit for 3 days. At 1 year follow-up, the patient was in good health and leading a normal life.

6.
Acta Pharmacol Sin ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605180

ABSTRACT

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.

7.
Transl Androl Urol ; 13(3): 433-441, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38590967

ABSTRACT

Background: ARASENS has demonstrated the efficacy and safety for darolutamide (DARO) with androgen deprivation therapy (ADT) plus docetaxel in metastasis hormone-sensitive prostate cancer (mHSPC). There is a lack of reports for DARO with ADT in mHSPC though the regimen is used in clinical from time to time. Moreover, recent studies have supported the importance of early and rapid prostate-specific antigen (PSA) reduction, which correlates with reduced disease progression and improved survival in patients with mHSPC. This study aims to evaluate PSA reduction as a primary endpoint for DARO with ADT in the treatment of mHSPC and to evaluate the real-world short-term PSA control of DARO with ADT from two leading medical centers in China. Methods: We retrospectively reviewed the clinical records of patients with mHSPC receiving ADT and DARO (600 mg, b.i.d.). The collection of data spanned from March 1, 2022, to July 31, 2023. The main observation indicators were PSA level and drug-related adverse events (AE) after medication. PSA levels were closely monitored prior to treatment initiation and at 2-week intervals, as well as at 1, 3, and 6 months after the initiation of treatment. We also conducted an analysis to determine the proportion of patients achieving a PSA reduction of 50% or more (PSA50) and 90% or more (PSA90) as well as the percentage of patients with a notable decrease in PSA level to 0.2 ng/mL and PSA nadir of ≤0.02 ng/mL. Results: Fifty-one patients were included in the study, with a median age of 73 years. At diagnosis of HSPC, the majority of patients had a Gleason score ≥8 (n=40, 78.40%) and a median baseline PSA level of 88 ng/mL. Approximately 45.1% (n=23) of patients had a Charlson Comorbidity Index over 1 and were receiving one or more nontumor-related treatments. The median follow-up time was 9.3 months (range, 1.16-15.8 months). The median reductions in PSA levels compared to baseline were 84.37%, 91.48%, 94.67% and 99.81% at 2 weeks, 1 month, 3 months and 6 months after administration of DARO with ADT, respectively. The median time to PSA50, PSA90, significant PSA reduction (PSA <0.2 ng/mL), and PSA nadir (PSA <0.02 ng/mL) was 0.97, 1.27, 1.98, and 2.08 months, respectively. AE mainly included fatigue (two patients) and arm pain (one patient), all of which were grade I or II AE. No grade III or AE were observed. Conclusions: For treating prostate cancer, DARO with ADT has good early efficacy, demonstrating prompt and substantial control of PSA levels, with a favorable safety profile.

8.
Psychol Res Behav Manag ; 17: 1561-1571, 2024.
Article in English | MEDLINE | ID: mdl-38617577

ABSTRACT

Purpose: Physical exercise is an important predictor of deviant behavior in adolescents; however, the paths and mechanisms underlying this relationship remain understudied. Patients and Methods: This cross-sectional study used education tracking data of 8725 Chinese adolescents (4453 males, 4240 females, average age 14 ± 0.73) to construct a chain mediation model to explore whether sleep quality and mental health mediated the relationship between physical exercise and adolescent deviant behavior. Results: The results show that physical exercise cannot directly predict adolescent deviant behavior; however, it can indirectly affect deviant behavior through the mediating effect of sleep quality and mental health as well as the chain mediating benefit of "sleep quality-mental health". Conclusion: Sleep quality and mental health are important internal factors of physical exercise that inhibit deviant adolescent behavior. The lack of physical activity and poor sleep quality should be prioritized in interventions regarding deviant behavior among Chinese adolescents.

9.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
10.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38574838

ABSTRACT

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Subject(s)
Benzamides , Ferroptosis , Microglia , NF-E2-Related Factor 2 , Pyrroles , Reperfusion Injury , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Disease Models, Animal , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Line , Active Transport, Cell Nucleus/drug effects
11.
World J Clin Cases ; 12(12): 2099-2108, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38680271

ABSTRACT

BACKGROUND: The clinical incidence of spinal infection is gradually increasing, and its onset is insidious, easily leading to missed diagnosis and misdiagnosis, which may lead to serious complications such as nervous system dysfunction, spinal instability and/or deformity, and cause a huge burden on society and families. Early identification of the causative agent and precision medicine will greatly reduce the suffering of patients. At present, the main pathogenic bacteria that cause spinal infection are Staphylococcus aureus, Streptococcus, Pneumococcus, Escherichia coli, and Klebsiella. There are no reports of spinal infection caused by Pseudomonas fluorescens. CASE SUMMARY: We report a 32-year-old female patient with spinal infection. She presented with flank pain, initially thought to be bone metastases or bone tuberculosis, and had a family background of tumors. Her clinical features and changes in imaging and laboratory tests led to the suspicion of thoracic spine infection. Histopathology of the lesion showed inflammation, tissue culture of the lesion was negative several times, and the possible pathogen - Pseudomonas fluorescens was found after gene sequencing of the lesion. The patient recovered completely after a full course of antibiotic treatment. CONCLUSION: This report increases the range of pathogens involved in spinal infections, highlights the unique advantages of gene sequencing technology in difficult-to-diagnose diseases, and validates conservative treatment with a full course of antibiotics for spinal infections without complications.

12.
Chemosphere ; 356: 141862, 2024 May.
Article in English | MEDLINE | ID: mdl-38579954

ABSTRACT

Atmospheric exposure is an important pathway of accumulation of lead (Pb) in Oryza sativa L. grains. In this study, source contributions of soil, early atmospheric exposure, and late atmospheric exposure, along with their bioaccumulation ratios were examined both in the pot and field experiments using stable Pb isotope fingerprinting technology combined with a three-compartment accumulation model. Furthermore, genotype differences in airborne Pb accumulation among four field-grown rice cultivars were investigated using the partial least squares path model (PLS-PM) linking rice Pb accumulation to agronomic traits. The findings revealed that during the late growth period, the air-foliar-grain transfer of Pb was crucial for rice Pb accumulation. Approximately 69-82% of the Pb found in polished rice was contributed by atmospheric source, with more than 80% accumulating during the late growth stage. The air accumulation ratios of rice grains were genotype-specific and estimated to be 0.364-1.062 m3/g during the late growth. Notably, grain size exhibited the highest standardized total effects on the airborne Pb concentrations in the polished rice, followed by leaf Pb and the upward translocation efficiency of Pb. The present study indicates that mitigating the health risks associated with Pb in rice can be achieved by controlling atmospheric Pb levels during the late growth stage and choosing Japonica inbred varieties characterized by large grain size.


Subject(s)
Air Pollutants , Genotype , Lead , Oryza , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Lead/metabolism , Air Pollutants/analysis , Air Pollutants/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis , Environmental Monitoring/methods , Isotopes
13.
Food Chem ; 448: 139043, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552463

ABSTRACT

This study aimed to evaluate the potential of the bilayer emulsions stabilized with casein/butyrylated dextrin nanoparticles and chitosan as fat substitutes in preparing low-calorie sponge cakes. Among the different cake groups, the substitution of bilayer emulsions at 60% exhibited comparable baking properties, appearance, texture characteristics and stable secondary structure to fat. The specific volume and height were increased by 36.94% and 22%, respectively, while the cake showed higher lightness (L*) in the cores and softer hardness in the crumb. In addition, the moisture content of cakes was increased while the water activity remained unchanged. These results showed that casein/butyrylated dextrin bilayer emulsion was a potential fat substitute for cake products at the ratio of 60% with the desirable characteristics.


Subject(s)
Caseins , Chitosan , Dextrins , Emulsions , Fat Substitutes , Nanoparticles , Chitosan/chemistry , Nanoparticles/chemistry , Caseins/chemistry , Dextrins/chemistry , Emulsions/chemistry , Fat Substitutes/chemistry , Cooking
14.
J Hazard Mater ; 470: 134134, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554514

ABSTRACT

Microbial remediation of cadmium-contaminated soil offers advantages like environmental friendliness, cost-effectiveness, and simple operation. However, the efficacy of this remediation process relies on obtaining dominant strains and a comprehensive understanding of their Cd adsorption mechanisms. This study identified two Cd-resistant bacteria, Burkholderia sp. 1-22 and Bacillus sp. 6-6, with significant growth-promoting effects from rice rhizosphere soil. The strains showed remarkable Cd resistance up to ∼200 mg/L and alleviated Cd toxicity by regulating pH and facilitating bacterial adsorption of Cd. FTIR analysis showed crucial surface functional groups, like carboxyl and amino groups, on bacteria played significant roles in Cd adsorption. The strains could induce CdCO3 formation via a microbially induced calcium precipitation (MICP) mechanism, confirmed by SEM-EDS, X-ray analysis, and elemental mapping. Pot experiments showed these strains significantly increased organic matter and enzyme activity (e.g., urease, sucrase, peroxidase) in the rhizosphere soil versus the control group. These changes are crucial for restricting Cd mobility. Furthermore, strains 6-6 and 1-22 significantly enhance plant root detoxification of Cd, alleviating toxicity. Notably, increased pH likely plays a vital role in enhancing Cd precipitation and adsorption by strains, converting free Cd into non-bioavailable forms.


Subject(s)
Bacillus , Burkholderia , Cadmium , Oryza , Rhizosphere , Soil Microbiology , Soil Pollutants , Oryza/microbiology , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Burkholderia/metabolism , Adsorption , Bacillus/metabolism , Biodegradation, Environmental , Hydrogen-Ion Concentration , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/metabolism
15.
Nat Commun ; 15(1): 2760, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553448

ABSTRACT

The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification. This facilitates ER membrane curvature and STING trafficking to Golgi. Notably, we identify two cholesterol-binding motifs in STING and confirm their contribution to ER-retention of STING. Consequently, depletion of intracellular cholesterol levels enhances STING pathway activation upon cGAMP stimulation. In a preclinical tumour model, intratumorally administered cholesterol depletion therapy potentiated STING-dependent anti-tumoral responses, which, in combination with anti-PD-1 antibodies, promoted tumour remission. Collectively, we demonstrate that ER cholesterol sets a threshold for STING signalling through cholesterol-binding motifs in STING and we propose that this could be exploited for cancer immunotherapy.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Membrane Proteins/metabolism , Signal Transduction/physiology , Interferons/metabolism , Nucleotidyltransferases/metabolism , Neoplasms/therapy , Neoplasms/metabolism , Endoplasmic Reticulum/metabolism , Tumor Microenvironment
16.
J Agric Food Chem ; 72(14): 7716-7726, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536397

ABSTRACT

The emergence of resistant pathogens has increased the demand for alternative fungicides. The use of natural products as chemical scaffolds is a potential method for developing fungicides. HWY-289, a semisynthetic protoberberine derivative, demonstrated broad-spectrum and potent activities against phytopathogenic fungi, particularly Botrytis cinerea (with EC50 values of 1.34 µg/mL). SEM and TEM imaging indicated that HWY-289 altered the morphology of the mycelium and the internal structure of cells. Transcriptomics revealed that it could break down cellular walls through amino acid sugar and nucleotide sugar metabolism. In addition, it substantially decreased chitinase activity and chitin synthase gene (BcCHSV) expression by 53.03 and 82.18% at 1.5 µg/mL, respectively. Moreover, this impacted the permeability and integrity of cell membranes. Finally, HWY-289 also hindered energy metabolism, resulting in a significant reduction of ATP content, ATPase activities, and key enzyme activities in the TCA cycle. Therefore, HWY-289 may be a potential candidate for the development of plant fungicides.


Subject(s)
Antifungal Agents , Berberine Alkaloids , Berberine/analogs & derivatives , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Botrytis , Sugars , Plant Diseases/microbiology
17.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38538620

ABSTRACT

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Subject(s)
Lactoglobulins , Water , Solvents/chemistry , Lactoglobulins/chemistry , Peptides , Ethanol , Spectroscopy, Fourier Transform Infrared , Microscopy, Atomic Force , Circular Dichroism
18.
Nanomicro Lett ; 16(1): 145, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441811

ABSTRACT

Aqueous Zn-ion batteries (AZIBs) have attracted increasing attention in next-generation energy storage systems due to their high safety and economic. Unfortunately, the side reactions, dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries. Here, we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a "catcher" to arrest active molecules (bound water molecules). The stable solvation structure of [Zn(H2O)6]2+ is capable of maintaining and completely inhibiting free water molecules. When [Zn(H2O)6]2+ is partially desolvated in the Helmholtz outer layer, the separated active molecules will be arrested by the "catcher" formed by the strong hydrogen bond N-H bond, ensuring the stable desolvation of Zn2+. The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm-2, Zn||V6O13 full battery achieved a capacity retention rate of 99.2% after 10,000 cycles at 10 A g-1. This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.

19.
Int J Biol Macromol ; 266(Pt 1): 131160, 2024 May.
Article in English | MEDLINE | ID: mdl-38547946

ABSTRACT

In present study, bilayer emulsions with different interfacial structures stabilized by casein/butyrylated dextrin nanoparticles (CDNP), chitosan (CS) and chitosan nanoparticles (CSNP) were prepared to overcome the limitations of conventional emulsions. The effects of chitosan morphology and incorporation sequences on the bilayer emulsions were examined. Bilayer emulsions prepared with CDNP as the inner layer and CS/CSNP as the outer layer were observed to have smaller droplet sizes (1.39 ± 86.74 um and 1.45 ± 7.87 um). Bilayer emulsions prepared with CDNP as the inner layer and CS as the outer layer exhibited the lowest creaming index (2.38 %) after 14 days of storage, indicating excellent stability. Furthermore, bilayer emulsion prepared with CDNP as the inner layer and CS as the outer layer also exhibited a uniform water distribution, excellent protein oxidative stability, and uniformly distributed droplets by the measurement of Low-field NMR, intrinsic tryptophan fluorescence and laser confocal laser scanning microscopy. These results indicated that the study provided a theoretical basis for the development and design of bilayer emulsions with different interfacial structures. This study also provides a new material for the preparation of delivery systems that protect biologically active compounds. Bilayer emulsions are promising for applications in traditional and manufactured food products.


Subject(s)
Caseins , Chitosan , Dextrins , Emulsions , Nanoparticles , Chitosan/chemistry , Caseins/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Dextrins/chemistry , Particle Size
20.
ACS Nano ; 18(11): 8002-8016, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451853

ABSTRACT

Single-crystal Ni-rich cathodes offer promising prospects in mitigating intergranular microcracks and side reaction issues commonly encountered in conventional polycrystalline cathodes. However, the utilization of micrometer-sized single-crystal particles has raised concerns about sluggish Li+ diffusion kinetics and unfavorable structural degradation, particularly in high Ni content cathodes. Herein, we present an innovative in situ doping strategy to regulate the dominant growth of characteristic planes in the single-crystal precursor, leading to enhanced mechanical properties and effectively tackling the challenges posed by ultrahigh-nickel layered cathodes. Compared with the traditional dry-doping method, our in situ doping approach possesses a more homogeneous and consistent modifying effect from the inside out, ensuring the uniform distribution of doping ions with large radius (Nb, Zr, W, etc). This mitigates the generally unsatisfactory substitution effect, thereby minimizing undesirable coating layers induced by different solubilities during the calcination process. Additionally, the uniformly dispersed ions from this in situ doping are beneficial for alleviating the two-phase coexistence of H2/H3 and optimizing the Li+ concentration gradient during cycling, thus inhibiting the formation of intragranular cracks and interfacial deterioration. Consequently, the in situ doped cathodes demonstrate exceptional cycle retention and rate performance under various harsh testing conditions. Our optimized in situ doping strategy not only expands the application prospects of elemental doping but also offers a promising research direction for developing high-energy-density single-crystal cathodes with extended lifetime.

SELECTION OF CITATIONS
SEARCH DETAIL
...